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Abstract

In this paper we investigate the application of Krylov methods to compress-

ible flows, and the effect of implicit boundary conditions on the implicit solution

of nonlinear problems. Two defect-correction procedures, namely, Approximate

Factorization (AF) for structured grids, and ILU/GMRES for general grids are

considered. Also, considered here, is Newton-Krylov matrix-free methods that we

combine with the use of mixed discretization schemes in the implicitly defined Ja-

cobian and its preconditioner. Numerical experiments that show the performance

of our approaches are then presented.
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1 Introduction

The implicit discretization of the compressible flows leads to a large sparse linear

system which needs to be solved at each time step. In the derivation of this system

one often uses a defect-correction procedure, in which the left-hand side of the

system is discretized using a lower order approximation than for the right-hand

side. This is due to storage considerations and computational complexity, and

also to the fact that the resulting lower order matrix is better conditioned than the

higher order matrix. The resulting methods are only moderately implicit. In the

case of structured, body-fitted grids, the linear system can easily be solved using

approximate factorization (AF), which is among the most widely used methods

for such grids. For unstructured grids, such techniques are no longer valid, and

the system is solved using direct or iterative methods. Because of the prohibitive

computational costs and large memory requirements for the solution of compress-

ible flows, iterative methods are preferred. In these defect-correction methods,

which are of practice in most CFD computer codes, the mismatch in the right and

left hand side operators together with explicit treatment of the boundary condi-

tions, lead to severely limited CFL number, which results in a slow convergence to

steady state aerodynamic solutions. Many authors have tried to replace explicit

boundary conditions with implicit ones (see for instance [19],[15], and [8]). They

showed that high CFL number can be used, however no clear advantages in terms

of CPU time as compared to explicit boundary conditions have been drawn.

We investigate here defect-correction procedures based on Krylov methods;

more particularly we study the ILU/GMRES methods together with implicit

treatment of the boundary conditions. We show in particular that, in the context

of Krylov methods improvements in terms of convergence rate can be achieved

through the use of implicit boundary conditions as compared to explicit ones.

However, the attractive Newton's method convergence property cannot be ap-

proached because of the mismatch of the right and left hand side operators.

Therefore we propose to use Newton-Krylov matrix-free (see [3]) methods com-

bined with mixed discretization in the implicitly defined Jacobian-Preconditioner.

Numerical experiments that show the performance of our approach are then pre-
sented.

In the next section, we describe the Newton-Krylov methodology together

with mixed discretization. We present, in the section 3, the Euler solver. The

description of the implicit boundary conditions is also given in the section 3.

Numerical experiments are presented in the section 4. The last section is devoted

to some remarks and extensions.



2 Newton-Krylov Methods

Newton-Krylov methods first proposed by Brown and Saad [3], have been inves-

tigated for compressible Euler and Navier-Stokes equations using unstructured

grids in [16], [17], and [7], and for structured grids in [4], and [5].

In [16] and [17], the author has applied the matrix-free Newton-Krylov method-

ology to both the transonic and supersonic compressible Navier-Stokes flows. In

[4] and [5], the authors have studied a convection-diffusion model problem, full

potential flows and the transonic compressible Euler flows. They have also pro-

posed and studied the Newton-Krylov-Schwarz methodology. An application to

incompressbile flows is reported in [9].

Newton-like methods, together with fully implicit linear solvers allow, in prin-

ciple, a more rapid asymptotic approach to steady states, f(u) = 0, than do

time-explicit methods or semi-implicit methods based on defect correction. Strict

Newton methods have the disadvantage of requiring solutions of linear systems

of equations based on the Jacobian, fi,(u), of the true steady nonlinear residual

and are often impractical in several respects:

. Their quadratic convergence properties are realized only asymptotically.

In early stages of the nonlinear iteration, continuation or regularization is

typically required in order to prevent divergence.

2. Some popular discretizations (e.g., using limiters) of f(u) are nondifferen-

tiable, leaving the Jacobian undefined in a continuous sense.

3. Even if f_(u) exists, it is often inconvenient or expensive to form either

analytically or numerically, and may be inconvenient to store.

4. Even if the true Jacobian is easily formed and stored, it may have a bad

condition number.

. The most popular family of preconditioners for large sparse Jacobians on

structured or unstructured two- or three-dimensional grids, the incomplete

factorizations, is difficult to parallelize efficiently.

In this paper we examine how points (1), (3) and (4) may be addressed through

Newton-Krylov methods. For point (2) we refer to [18], and for point (5) we refer

to [4] and [5].

The memory requirements and the computational complexity for the higher-

order matrix representation, whether by analytical or numerical means, are pro-

hibitive. In this context, matrix-free Newton-Krylov methods, in which the action

of the Jacobian is required only on a set of given vectors are natural. To solve

the nonlinear system f(u) = 0, given u °, let u I+1 = u l + lt_uZ, for l = 0, 1,...,

until the residual is sufficiently small, where (_ut approximately solves the Newton

correction equation J(ut)_u z = -f(uZ), and parameter tt is selected by some line
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searchor trust regionalgorithm [6]. Krylov methods,suchasthe method of con-
jugate gradients for symmetric positive definite systemsor GMRES for general
nonsingularsystems,find the best approximationof the solution in a relatively
small-dimensionalsubspacethat is built up from successivepowersof the Jaco-
bian on the initial residual. The Krylov solver usedthroughout this paper is
GMRES [13].

The action of Jacobian J on an arbitrary Krylov vector w can be approximated

by

Finite-differencing with e makes such matrix-free methods potentially much more

susceptible to finite word-length effects than ordinary Krylov methods [9].

The selection of an optimal parameter e, is non trivial. If e is too small then

the rounding errors made in the numerator are amplified by a factor of order 1

which leads to an inaccurate result. If on the other hand e is too large then the

approximation of J(ut)w will be poor. Any reasonable choice of e should attempt

to reach a compromise between these two difficulties. The technique for choosing

the scalar e we use here is:

_ _ max{l(u_v)l,typu'[v]}.

where Iv[ = (Ivl[,...,[vn[) T, and typu is given value depending on u and the

problem to be solved. We note here that GMRES may have an advantage over

other Krylov methods in the matrix-free context in that the vectors v that arise in

GMRES have unit two-norm, but may have widely varying scale in other Krylov

methods for nonsymmetric systems. Right preconditioning spoils the perfect unit

two-norm. For an extended discussion of matrix-free applications of the Jacobian

in the Krylov context, see [3].

Steady aerodynamics applications require the solution of linear systems that

lack strong diagonal dominance, so it is important to verify that properly-scaled

matrix-free methods can be employed in this context.

Although the matrix-free method is attractive because it does not form the

matrix explicitly, the matrix is still required for preconditioning purposes. In [16],

[17], and [7] the authors settled for a compromise that uses a block-diagonal pre-

conditioner. However, most preconditioners require the matrix-explicitly. This

is true for ILU preconditioner. Therefore, we form only, as in defect-corection

method only the matrix of a lower order system to precondition the consistent

higher order system. An approximation to the Jacobian can be used to precon-

dition the Krylov process. Examples are:

1. the Jacobian of a lower-order discretization,

2. the Jacobian of a related discretization that allows economical analytical

evaluation of elements, and
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3. domain-parallel preconditionerscomposedof Jacobian blocks on subdo-
mains of the full problemdomain.

We considerhereonly cases1 and 2. Case3 can be combinedwith any of the
split-discretization techniques(cases1-2), in principle and is studied in [4] and
[5].

Left preconditioning of the Jacobian with an operator B -1 can be accommo-

dated via
1

B-IJ(ut)w _ -[B-lf((u i A- _w))- /(u')] ,
C

where f(u') = B -lf(u') is stored once, and right preconditioning via

a(,,')z_-,w_ 1-[s((_'+ <s_-,w))- f(_,)].

Right preconditioning is preferable when the focus is on comparing different pre-

conditioners, since the residual norm measured as a by-product in GMRES and

used in the termination test is independent of any right preconditioning. On the

other hand, any left preconditioning changes the residual norm estimate available

as a by-product in GMRES. Left preconditioning may be preferable when GM-

RES is applied in practice as the solver for an inexact Newton method. When

the preconditioning B -1 is of high quality, the left-preconditioned residual serves

as an estimate of the error in the Newton update vector. This leads to a useful

termination condition when Newton step acceptance tests are based on I1_11.

3 Compressible Euler Equations

3.1 Governing Equations

The non-dimensional Euler Equations in three dimensions for the dependent vari-

able vector Q - [p, pu, pv, pw, e]T are

Qt + F(Q)_ + G(Q)_ + H(Q)= = 0,

After changing the variables into the curvilinear coordinates

(1)

= t,_ =_(x,_,z),, = ,(x,_, z),¢ = ¢(_,y,z)

The equations are now expressed in the strong conservation laws as

0, + (?)_ + (c), + (D)_= 0, (2)
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where1_and the contravariantflux vectors,F and G, are defined in terms of the

Cartesian fluxes and the Jacobian determinant of the coordinate system trans-

formation, through

Q = j-1Q

p = j-1 (6Q + _xf + _a + _H)
= j-i (rhQ -t- r]xF -t- 7]yG -Jr- rlzH )

fI = g-i (SQ + _zF + _yG-{- _zH) .

and

J
o(_,,,C,-_)
o(x,y,z,t)

= det r/_ r&

0 0

((, _= det r/_ r/_

_z

r/z

0 1

r/z

rh
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3.2 Finite volume scheme

By assuming the dependent variables to be constant in the interior of cell(i,j,k),

and that the flux vectors F, G, and H are constant over the constant _, r/, and

surfaces of the cell, respectively, then an implicit finite volume discretization of

equation (1) can be written as

as

f)n+l n " ( pn+ l Fin_-t-1,_i,j,k - Q;,3,k)A_Ar/A(, + _ i+½,j,k - j,k)Ar/A_ Ar

-- (unq-I un+l )A(Ar/AT = 0k C y ,k)ZX ACZX,+ (3)

Using the flux split formula (see below), the above equations can be written

AQ _ + Ar(5¢(F + + F-) _+_ + 5.(G + + G-) _+_ + 54(H + + H-) TM) = 0

where 5¢, for example, is defined by

1

_ = -_[Fi+ll2,j,k- Fi-ll2,j,k]

(4)

(5)



and _, and 64 are defined analogously. The split vector for F is given by

F = F + + F-, (6)

with similar expressions for G and H. F + is associated with the eigenvalues that

have positive signs and F- is associated with the eigenvalues that have negatives

signs (see Steger-Warming)., and G +, G-, H +, andH- are defined analogously.

The implicit split-flux discretization is given by

[I + AT[(6¢(F + + F-) TM + 6¢(G + + G-) TM + _,( H+ + H-) TM]

= -AT(5_F n + 3_G" + 5_H n)

A linearization of first order in time of the above equation yields

(7)

[I + AT(6#A +" + 6_A-. + 6_B +" + 6_B-. + 6_C +" + _5_C-')AQ '_

= -AT(_5_F" + 6_G n + 6_H '_) (8)

Where a distinction has been made between the implicit spatial difference op-

erator and the explicit spatial difference operators by using supersripts i and e,

respectively. The dots indicate that the difference operators apply to the product

of the Jacobian matrices with /kQ _. The matrices A +, A-, B +, B-, C +, andC-

are defined by

OF + OF-
A + - A- - (9)

OQ ' OQ '

OG + OG-
B + _ B- - (10)

OQ ' OQ '

C+ = OH + OH- (11)
OQ' C- = -_---Q-.

The finite volume discretization given by equation (3) requires the numeri-

cal flux at a cell face. These fluxes are computed using the Roe's approximate

Riemann solver [12]. Three limiters are employed: minmod, Superbee, and Van

Leer. The Jacobians are evaluated using first-order Roe's scheme, or the flux-

vector split scheme [14], which corresponds to the true partials of the positive and

negative flux vectors as described earlier. However, the flux-vector split scheme

has been shown to give improved convergence rates over the Roe matrices. Be-

cause the Jacobian matrices corresponding to the flux-vector split scheme work

better on the left hand side in the solution matrix than the Roe matrices, this

is the scheme presently being employed in the context of defect, correction. This

results in inconsistent left and right hand side operators.
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Remark 3.1 For most CFD codes, the implicit spatial differences are only first-

order accurate. Because deriving higher-order accuracy is difficult, and the re-

sulting matrices are very large and require a lot of storage, large operation count

in its evaluation, and may be very difficult to invert.

Remark 3.2 For Roe's scheme, it is difficult to obtain the true Jacobian. Barth

[1], has obtained such Jacobian in two dimensions. However, for three dimen-

sions, the evaluation of such Jacobian needs large operation count.

Following these remarks, the implicit spatial differences in equation (1) are

approximated, as mentioned above, through a first-order accurate scheme•

The explicit spatial differences in equation (1) are approximated using the

higher order formulations of Roe's scheme, that are based on the work of Osher

and Chakravarthy [11].

3.3 Explicit boundary conditions

The boundary conditions are derived using the locally one-dimensional charac-

teristic variable boundary conditions, which yields (for the calculations see for

example [10]):

3.3.1 Farfield-Subsonic Inflow

• i -
Pb = (1/2)P_ + Pi + slgn(Ak)poco[k_:(u_ - ui) + ku(v_ - vi) + [%(w_ - wi)]

pb = po+ [(pb- po)/C_o]
ub = u_ + [¢_:[(P_ - Pb)/(poCo)]sign(A_)

vb = v_ + _:u[(P_ - Pb)/(poCo)]sign(A_)

wb = w_ + kz[(P_ - Pb)/(poCo)]sign(A_)

Note that these signs correspond to the sign of the first three eigenvalues, and

hence this is a means of writing the code for general applications with arbitrary

orientation of the computational coordinates. The point a is outside the compu-

tational domain, point b is on the computational boundary, and i is inside the

computational domain.

3.3.2 Farfield-Subsonic Outflow

Pb = P_

p_ = po+ [(P_- po)/c_o]

ub = u_ + k_[(P_ - Pb)l(poCo)]sign(A_)

vb = v_ + _:u[(P_- Pb)/(poCo)]sign(Aik)

wb = w_ + k_[(P_- Pb)/(poCo)]sign(Aik)



3.3.3 Impermeable Surface

Pb - P_ - +poCo

_b = _ - k_:(k_u_+ _,v_ + Lw_)

vb = v_ - G(Gu_ + _:_v,+ k_w_)

wb = w_- k_(Gu_ + _v_ + k_w_)

where the point r is the center of the first cell from the boundary and the minus

sign in equation (1) is used if r is in the positive k direction from the boundary,

and the plus sign is used if r is in the negative direction from the boundary.

3.3.4 Farfield-Supersonic Inflow

In this case all eigenvalues have the same sign. Since we have an inflow case all

variables are specified.

3.3.5 Farfield-Supersonic Outflow

In this case also, all eigenvalues have the same sign. But now we have an outflow

case, therefore, all variables must be obtained from the solution in the compu-

tational domain. All variables are extrapolated from inside the computational

domain to the boundary.

3.4 Implicit boundary conditions

In the implicit form, the above boundary conditions can be written in the form

of operators formulated as functions of the conservation vector W:

FB(W)=O

and are implemented implicitly through:

OFB6w = -FB(W).
OW

Using these implicit boundary conditions, we show that starting from a small

initial CFL number (10), CFL may be adaptively advanced according to:

CFL _+1 = CFL t • IIf(u)[I t-1
iI/(u)l[t

This is the key to the successful implementation of Newton-Krylov matrix-free

method studied in this paper.
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4 Numerical Results

To test the different methodologies developed here we consider a NACA0012

steady transonic airfoil at an angle of attack of 1.25 degrees and a freestream Mach

number of 0.8. We consider two meshes, with 2048 and 4096 cells, respectively.

We call the first mesh, meshl, while the second will be denoted by mesh2. In all

computations performed herein the solution obtained agrees with the standard

one.

The initial code is an EAGLE-derivative code [10] that employs the discretiza-

tion described in section 3 with explicit boundary conditions, over a body-fitted

grid, and which uses a linear solver of an approximate factorization (AF) type

(see for example [2]).

We have implemented implicit boundary conditions as described in section

3. We have also replaced the (AF) solver by ILU/GMRES solver. And we have

implemented the Newton-Krylov matrix-free methods.

We first compare the defect-correction procedures of (AF) type and

ILU/GMRES with explicit boundary conditions on the test case described above.

Then, we compare these results with those obtained by replacing explicit bound-

ary conditions by implicit ones. Finally we study the performance of Newton-

Krylov matrix-free. All calculations performed here are done on the same Sparc20
machine.

4.1 Defect-Correction procedures: meshl case

4.1.1 Explicit boundary conditions

We compare here the results obtained using approximate factorization (AF)

method and ILU/GMRES when the boundary conditions are explicit. We ob-

serve that to reach the same level of accuracy, the CPU time necessary for AF

method is almost double the time necessary to reach the same level of accuracy

with the Krylov method (ILU/GMRES) as can be seen in figures 1 and 2, which

show, respectively, the iteration count versus the steady residual norm and the

CPU time versus the steady residual norm. Moreover, using (AF) method the

steady residual norm cannot be dropped to the same final steady residual norm

reached by the converged solution obtained using ILU/GMRES. As can be seen

below, finer mesh is needed for the steady residual norm to be dropped to the

same level as for the Krylov method, when AF is used.

4.1.2 Implicit boundary conditions

We first compare different calculations obtained using different CFL numbers.

The results are presented in figures 3 and 4 where we show a comparison of the

CPU time versus the steady residual norm. These calculations are performed



using a CFL number equal to 6.5, 100,and 500 respectively. From thesecom-
parisonswecanseethat using high CFL number improvesthe convergencerate.
However,whenthe CFL number is larger than 100,no further improvementcan
be obtained. This is due to the mismatch of the left and right hand side oper-
ators. We will seein the next sectionthat this drawbackcan be removedusing
Newton-Krylov methodology describedin section 2. We will now validate the
CFL strategy describedin section3. In figures 5 and 6 we comparethe calcula-
tions performed with a CFL number of 100 to the calculationsperformed with
the CFL strategydescribedin section3. This comparisonshowsthe validation of
using these techniques. It also showsthat the convergedsolution is obtained in
about the sameCPU time. In figure 7, weshowthe CFL versusiteration count.
Now weshowin figures 8 and 9, comparisonsof steadystate residual norm ver-
susthe iteration count and CPU time for the convergedsolution obtained using
explicit boundary conditions with a CFL number equalto 6.5 and using implicit
boundary conditions with a CFL of 100. We observethat an improvement in
terms of the CPU time is obtainedwhen weuse implicit boundary conditions as
comparedto explicit ones. This comparisonhighlights the gain obtained using
implicit boundary conditions whenKrylov methodsareusedaslinear solvers.We
shouldnotice that using AF solver,the implicit boundary conditions do not im-
provethe convergencerate becausethe AF method is basedon anapproximation
of first order to the linear systemto be solved.

4.2 Newton-Krylov matrix-free procedures: meshl case

We study here the Newton-Krylov matrix-free methodology described in section

2. The techniques used in the choice of the finite differencing parameter are de-

scribed in section 2. To take full advantage of the power of Newton's method, and

thus to allow a more rapid asymptotic convergence to the steady state solution, we

use the CFL strategy described in section 3, and validated above. The ILU pre-

conditioner we use here is formed from a lower order discretization and is exactly

the same as that used already in the defect-correction procedure studied above.

This results in a mixed Jacobian/Preconditioner discretization. More precisely,

the explicitly available (Van Leer) first-order flux vector split Jacobian (Jvz) is

used to precondition the implicitly defined (Roe) higher-order flux difference split

Jacobian (JR) at each implicit time step. In matrix terms, the correction u is

obtained as the approximate solution of,

(JvL)-IJRu = --(JvL)-l fR.

While in the defect-correction context, this correction was obtained as the

approximate solution of,

JvLu = --YR.

We first compare the results obtained using ILU/GMRES with implicit bound-

ary conditions and with CFL of 100, and using Newton-Krylov matrix-free. The
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results are presented in figures 10 and 11, in which we show, respectively, the

steady residual versus the iteration count and the steady residual versus the CPU

time. We perform 4 Newton iterations in each implicit time step. The stopping

criterion corresponds to a steady residual norm of 10 -9.

In figures 12 and 13 we show a comparison of the four methods studied in this

paper. Clearly, we can see that Newton-Krylov matrix-free outperforms all the

other three methods.

To refine our analysis we have performed the same study but on a much finer

grid. The results are discussed below.

4.3 Defect-Correction procedures: mesh2 case

4.3.1 Explicit boundary conditions

We compare here the results obtained using approximate factorization (AF)

method and ILU/GMRES when the boundary conditions are explicit. Similarly

to the meshl case, we observe that in order to reach the same level of accuracy,

the CPU time necessary for AF method is almost double the time necessary with

the Krylov method (ILU/GMRES) as can be seen in figures 14 and 15, which

show, respectively, the iteration count versus the steady residual norm and the

CPU time versus the steady residual norm.

4.3.2 Implicit boundary conditions

As for the meshl case, we first compare different calculations obtained using

different CFL numbers. The results are presented in figures 16 and 17 where we

show a comparison of the steady state residual norm versus CPU time. These

calculations are performed using a CFL number equal respectively to 5, 100, and

500. These comparisons show again that using high CFL number improves the

convergence rate. However, when the CFL number is larger than 100, no further

improvement can be obtained. This is due to the mismatch of the left and right

hand side operators. We will see in the next section that this drawback can

be removed using Newton-Krylov methodology described in section 2. We will

now, validate the CFL strategy described in section 3. In figures 18 and 19 we

compare the calculations performed with CFL 100 to the calculations performed

with the CFL strategy described in section 3. This comparison shows again the

validation of using these techniques. It also shows that the converged solution

is obtained in about the same CPU time. In figure 20, we show the CFL versus

iteration count. Now we show in figures 21 and 22, comparisons of steady state

residual norm versus the iteration count and CPU time for the converged solution

obtained using explicit boundary conditions with a CFL number equal to 5 and

using implicit boundary conditions with a CFL number equal to 100. We observe

that an improvement in terms of the CPU time is obtained when we use implicit

boundary conditions as compared to explicit ones. This comparison highlights

11



again the gain obtained using implicit boundary conditions when Krylov methods
are used as linear solvers.

4.4 Newton-Krylov matrix-free procedures: mesh2 case

Here, we study here again the Newton-Krylov matrix-free methodology described

in section 2. The techniques used in the choice of the finite differencing param-

eter are described in section 2. To take full advantage of the power of Newton's

method, and thus to allow a more rapid asymptotic convergence to the steady

state solution, we use the CFL strategy described in section 3, and validated

above. The ILU preconditioner we use here is formed from a lower order dis-

cretization and is exactly the same as that used already in the defect-correction

procedure studied above. This results in a mixed Jacobian/Preconditioner dis-

cretization. More precisely, the explicitly available (Van Leer) first-order flux

vector split Jacobian (JvL) is used to precondition the implicitly defined (Roe)

higher-order flux difference split Jacobian (JR) at each implicit time step. In

matrix terms, the correction u is obtained as the approximate solution of,

(JvL)-1 Jnu = --(JvL)-' fR.

While in the defect-correction context, this correction was obtained as the

approximate solution of,

dvLu -- --fR.

We first compare the results obtained using ILU/GMRES with implicit bound-

ary conditions and with CFL of 100, and using Newton-Krylov matrix-free. The

results are presented in figures 23 and 24, in which we show, respectively, the

steady residual versus the iteration count and the steady residual versus the CPU

time. We perform 4 Newton iterations in each implicit time step. The stopping

criterion corresponds to a steady residual norm of 10 -9.

In figures 25 and 26 we show a comparison of the four methods studied in

this paper. The comparison highlights the efficiency and performance of the

Newton-Krylov matrix-free method.

5 Conclusions

In this paper we have demonstrated the performance of Krylov based methods.

The convergence rate is improved using implicit boundary conditions as compared

to explicit ones. The higher-order Jacobian needed in the Newton's method need

not be computed explicitly in the Newton-Krylov matrix-free context. The use of

mixed discretization (higher-order) Jacobian / (lower-order) preconditioner, re-

sults in an efficient preconditioned Newton-Krylov matrix-free algorithm in terms

of CPU time as has been shown in the numerical experiments presented in this

study.
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Figure 1: Steady-state residual versus iteration count for approximate factoriza-

tion (AF) and ILU/GMRES solvers.
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Figure 2: Steady-state residual versus CPU time for approximate factorization

(AF) and ILU/GMRES solvers.
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Figure 3: Steady-state residual versus iteration count for ILU/GMRES solver

with different CFL: 6.5, 100, and 500.
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Figure 4: Steady-state residual versus CPU time for ILU/GMRES solver with
different CFL: 6.5, 100, and 500.
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Figure 5: Steady-state residual versus iteration count for ILU/GMRES solvers

with CFL constant equal 100, and with adaptively increasing CFL.
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Figure 6: Steady-state residual versus CPU time for ILU/GMRES solvers with

CFL constant equal 100, and with adaptively increasing CFL.
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Figure 7: CFL versus iteration count for ILU/GMRES solvers.
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Figure 8: Steady state residual versus iteration count for ILU/GMRES solvers

with explicit boundary conditions and implicit boundary conditions.
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Figure 9: Steady state residual versus CPU time for ILU/GMRES solvers with

explicit boundary conditions and implicit boundary conditions.
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Figure 10: Steady-state residual versus iteration count for defect correction

(ILU/GMRES) and Newton-Krylov matrix-free solvers.
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Figure 11: Steady-state residual versus CPU time for defect correction

(ILU/GMRES) and Newton-Krylov matrix-free solvers.
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Figure 12: Steady-state residual versus iteration count for approximate factor-

ization (AF), ILU/GMRES with explict boundary conditions, ILU/GMRES with

implicit boundary conditions, and Newton-Krylov matrix-free solvers.
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Figure 13: Steady-state residual versus CPU time for approximate factorization

(AF), ILU/GMRES with explict boundary conditions, ILU/GMRES with implicit

boundary conditions, and Newton-Krylov matrix-free solvers.
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Figure 14: Steady-state residual versus iteration count for approximate factor-

ization (AF) and ILU/GMRES solvers.
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Figure 15: Steady-state residual versus CPU time for approximate factorization

(AF) and ILU/GMRES solvers.
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Figure 16: Steady-state residual versus iteration count for ILU/GMRES solver

with different CFL: 5, 100, and 500.
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Figure 17: Steady-state residual versus CPU time for ILU/GMRES solver with

different CFL: 5, 100, and 500.
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Figure 18: Steady-state residual versus iteration count for ILU/GMRES solvers

with CFL constant equal 100, and with adaptively increasing CFL.
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Figure 19: Steady-state residual versus CPU time for ILU/GMRES solvers with

CFL constant equal 100, and with adaptively increasing CFL.

24



1600

1400

1200

I000

800

6OO

4O0

200

200 400 600 800 I000

i

-ilugmresivCFL" --

I

1200

Figure 20: CFL versus iteration count for ILU/GMRES solvers.
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Figure 2h Steady state residual versus iteration count for ILU/GMRES solvers

with explicit boundary conditions and implicit boundary conditions.
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Figure 22: Steady state residual versus CPU time for ILU/GMRES solvers with

explicit boundary conditions and implicit boundary conditions.

-i i ! i ! i i i i

"nkITRES" --

"ilugmresil001T ......

-2

-5

-6

-7

-8

-9

I I I I I I-10

0 I00 200 300 400 500 600

I i

700 800 900

Figure 23: Steady-state residual versus iteration count for defect correction

(ILU/GMRES) and Newton-Krylov matrix-free solvers.
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Figure 24: Steady-state residual versus CPU time for defect correction

(ILU/GMRES) and Newton-Krylov matrix-free solvers.
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Figure 25: Steady-state residual versus iteration count for approximate factor-

ization (AF), ILU/GMRES with explict boundary conditions, ILU/GMRES with

implicit boundary conditions, and Newton-Krylov matrix-free solvers.
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Figure 26: Steady-state residual versus CPU time for approximate factorization

(AF), ILU/GMRES with explict boundary conditions, ILU/GMRES with implicit

boundary conditions, and Newton-Krylov matrix-free solvers.
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Figure 27: Pressure coefficient.
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